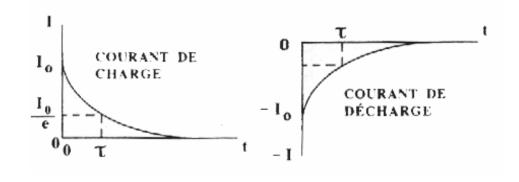
#8. Condensateurs 2

<u>**Buts**</u>: Étudier la charge et la décharge d'un condensateur dans un circuit RC. Trouver la constante de temps d'un circuit RC.

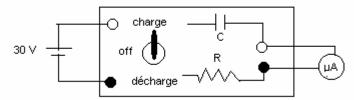
Matériel:

 $\begin{array}{lll} \mbox{Source de tension (6 volts)} & \mbox{Un condensateur $C_1=47$ μF} \\ \mbox{Un multimètre} & \mbox{Un condensateur $C_2=150$ μF} \\ \mbox{Ensemble de fils de raccordement} & \mbox{Une résistance $R_1=560$ $k\Omega$} \\ \mbox{Une plaque du montage} & \mbox{Une résistance $R_2=390$ $k\Omega$} \\ \mbox{Un chronomètre} & \mbox{Une résistance $R_2=390$ $k\Omega$} \\ \mbox{Une resistance $R_2=390$ $k\Omega$} \\ \mbox$


Théorie:

Sur les schémas suivants, on peut voir les courbes théoriques des courants de charge et de décharge d'un condensateur. I_o correspond au courant initial du circuit RC et τ correspond à la constante de temps du même circuit. Cette constante (pour un circuit RC donné) dépend de la valeur de la résistance R et de la valeur de la capacité C. Elle correspond aussi au temps nécessaire pour que le courant atteigne une valeur de I_o / e (e = 2,718).

$$\tau_{cal} = R C$$


où
$$\tau_{cal} = constante de temps (s)$$

 $R = résistance (\Omega)$

C = capacité (F)

Manipulations:

- 1. Mesurer les valeurs de R_1 , R_2 , C_1 et C_2 avec le multimètre (**N.B.**: pour les capacités, décharger d'abord les condensateurs et appuyer sur le bouton LC du multimètre).
- 2. Réaliser le montage suivant (commencer avec C_1 et R_1):

- 3. Placer l'interrupteur en position « off ».
- 4. Pour charger le condensateur, placer l'interrupteur en position « charge ». Au même moment, commencez à mesurer le courant (I_{charge}) en fonction du temps (t). Noter I_o à t=0 s.
- 5. Pour décharger le condensateur, placer l'interrupteur en position « décharge ». Au même moment, commencer à mesurer le courant (I décharge) en fonction du temps.
- 6. Répéter les étapes 3 à 5 pour le condensateur C₂ et la résistance R₂.
- 7. Répéter les étapes 3 à 5 pour le condensateur C_1 et la résistance R_2 .
- 8. Répéter les étapes 3 à 5 pour le condensateur C_2 et la résistance R_1 .

$C_1 =$	
$\mathbf{R}_1 =$	

$C_2 =$	
$\mathbf{R}_2 =$	

Temps (± 1 s)	I_{charge} $(\pm \mu A)$	$I_{d\acute{e}charge}$ (\pm μA)
0		
15		
30		
45		
60		
75		
90		
105		
120		
135		
150		
200		
300		

Temps	I charge	I décharge
$(\pm 1 s)$	$(\pm \mu A)$	$(\pm \mu A)$
0		
15		
30		
45		
60		
75		
90		
105		
120		
135		
150		
200		
300		

$c_{1 \text{ cal}} = \underline{}$	
$\tau_{1 \text{ exp}} = \underline{\hspace{1cm}}$	
$\text{Écart}_{1}(\%) =$	

$\tau_{2 \text{ cal}} = \underline{\hspace{1cm}}$	
$\tau_{2 \text{ exp}} = \underline{\hspace{1cm}}$	
$\text{Écart}_2(\%) =$	

$C_1 = $	$C_2 = $	
$\mathbf{R}_2 = \underline{\hspace{1cm}}$	$\mathbf{R}_1 = \underline{}$	

Temps	I charge	I décharge
$(\pm 1 s)$	$(\pm \mu A)$	$(\pm \mu A)$
0		
15		
30		
45		
60		
75		
90		
105		
120		
135		
150		
200		
300		

Temps	I charge		I déc	charge
$(\pm 1 s)$	(±	μA)	(±	μΑ)
0				
15				
30				
45				
60				
75				
90				
105				
120				
135				
150				
200				
300				

$ au_{3 cal} =$	$ au_{ ext{4 cal}} =$
$\tau_{3 \text{ exp}} =$	$\tau_{4 \text{ exp}} =$
$\tau_{3 \text{ exp}} = \underline{\hspace{1cm}}$ Écart 3 (%) = $\underline{\hspace{1cm}}$	Écart ₄ (%) =

Analyse:

- 1. Déterminer la constante de temps calculée ($\tau_{x cal}$) de chacun des circuits.
- 2. Pour chaque circuit, tracer une courbe de courant en fonction du temps pour la charge et la décharge du condensateur. Tracer ces courbes sur le même graphique et mettre l'axe des x au centre de la feuille. Donc, vous aurez 4 graphiques comportant 2 courbes.
- 3. Déterminer la constante de temps expérimentale de chacun des circuit d'après les courbes de charge et de décharge ($\tau_{x \text{ exp}} = (\tau_{x \text{ exp charge}} + \tau_{x \text{ exp décharge}}) / 2$).
- 4. Calculer le pourcentage d'écart entre $\tau_{x exp}$ et $\tau_{x cal}$ pour chacun des circuits.
- 5. Nommer et expliquer les principales causes d'erreur de ce laboratoire.
- 6. Que déduisez-vous des résultats obtenus ?